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Abstract

We present a method for constructing ensem-
bles from libraries of thousands of models.
Model libraries are generated using different
learning algorithms and parameter settings.
Forward stepwise selection is used to add to
the ensemble the models that maximize its
performance. Ensemble selection allows en-
sembles to be optimized to performance met-
ric such as accuracy, cross entropy, mean
precision, or ROC Area. Experiments with
seven test problems and ten metrics demon-
strate the benefit of ensemble selection.

1. Introduction

An ensemble is a collection of models whose predic-
tions are combined by weighted averaging or voting.
Dietterich (2000) states that “A necessary and suffi-
cient condition for an ensemble of classifiers to be more
accurate than any of its individual members is if the
classifiers are accurate and diverse.”

Many methods have been proposed to generate accu-
rate, yet diverse, sets of models. Bagging (Breiman,
1996) trains models of one type (e.g., C4 decision trees)
on bootstrap samples of the training set. Opitz (1999)
bags features instead of training points. Boosting
(Schapire, 2001) generates a potentially more diverse
set of models than bagging by weighting the train-
ing set to force new models attend to those points
that are difficult to classify correctly. Sullivan et al.
(2000) boost features instead of training points. Error-
correcting-output-codes (ECOC) (Dietterich & Bakiri,
1995) creates models with decorrelated errors by train-
ing models for multi-class problems on different di-
chotomies. Munro and Parmanto (1996) created di-
verse neural nets via competition among nodes.
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Here we generate diverse sets of models by using many
different algorithms. We use Support Vector Machines
(SVMs), artificial neural nets (ANNs), memory-based
learning (KNN), decision trees (DT), bagged decision
trees (BAG-DT), boosted decision trees (BST-DT),
and boosted stumps (BST-STMP). For each algorithm
we train models using many different parameter set-
tings. For example, we train 121 SVMs by varying
the margin parameter C, the kernel, and the kernel
parameters (e.g. varying gamma with RBF kernels.)

We train about 2000 models for each problem. Some
models have excellent performance, equal to or better
than the best models reported in the literature. Other
models, however, have mediocre or even poor perfor-
mance. Rather than combine good and bad models in
an ensemble, we use forward stepwise selection from
the library of models to find a subset of models that
when averaged together yield excellent performance.
The basic ensemble selection procedure is very simple:

1. Start with the empty ensemble.

2. Add to the ensemble the model in the library that
maximizes the ensemble’s performance to the er-
ror metric on a hillclimb (validation) set.

3. Repeat Step 2 for a fixed number of iterations or
until all the models have been used.

4. Return the ensemble from the nested set of en-
sembles that has maximum performance on the
hillclimb (validation) set.

Models are added to an ensemble by averaging their
predictions with the models already in the ensemble.
This makes adding a model to the ensemble very fast,
allowing ensembles with excellent performance to be
found in minutes from libraries with 2000 models.
Moreover, the selection procedure allows us to opti-
mize the ensemble to any easily computed performance
metric. We evaluate the performance of ensemble se-
lection on ten performance metrics. We believe this
is the first time a learning method has been evaluated
across such a wide variety of performance metrics.



On each performance metric we compare ensemble se-
lection to the model in the library that performs best
on that metric. Because we generate so many different
models, libraries usually contain a few models with ex-
cellent performance on any performance metric. Just
selecting the best single model from a library yields re-
markably good performance. Ensemble selection, how-
ever, finds ensembles that outperform the best sin-
gle models. This suggests that using different learn-
ing methods and parameter settings generates libraries
containing a diverse set of good-performing models.

The parameters we vary for each algorithm to gener-
ate 2000 models are described in the Appendix. Note
that we do not determine what parameters yield best
performance when training models. All models are
added to a library no matter how good or bad they
are. Model predictions on the train and hillclimbing
sets are cached. This simplifies working with the li-
brary and makes model selection faster because the
models do not have to be executed during selection.

2. Improving Ensemble Selection

The simple forward model selection procedure pre-
sented in the Introduction is fast and effective, but
sometimes overfits to the hillclimbing set, reducing en-
semble performance. We made three additions to this
selection procedure to reduce overfitting. These are
discussed in the next three sub-sections. These meth-
ods may be useful in other applications where forward
stepwise selection is prone to overfitting, such as in
feature selection (Kohavi & John, 1997).

2.1. Selection with Replacement

With model selection without replacement, perfor-
mance improves as the best models are added to the
ensemble, peaks, and then quickly declines. Perfor-
mance drops because the best models in the library
have been used and selection must now add models
that hurt the ensemble. Figure 1 shows this behavior
for root-mean-squared-error. Unfortunately, most er-
ror metrics yield much bumpier graphs than this when
hillclimbing is done with small data sets, making it dif-
ficult to reliably pick a good stopping point. The loss
in performance can be significant if the peak is missed.

Figure 1 also shows that selecting models with replace-
ment greatly reduces this problem. Selection with re-
placement allows models to be added to the ensemble
multiple times. Once peak performance is reached,
if the unused models all hurt ensemble performance,
selection adds models that were added before rather
than hurt performance. This flattens the performance

curve past the peak, and allows selection to fine tune
ensembles by weighting models: models added to the
ensemble multiple times receive more weight.
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Figure 1. Selection With and Without Replacement.

Selection with replacement flattens the curve so much
that a test set is not needed to determine when to
stop adding models to the ensemble. The hillclimb-
ing set can be used to stop hillclimbing. This means
ensemble selection does not need more test sets than
the base-level models would have used to select model
parameters. Ensemble selection uses the validation set
to do both parameter and model selection.

2.2. Sorted Ensemble Initialization

Forward selection sometimes overfits early in selection
when ensembles are small. One way to prevent this
is to initialize ensembles with more models. Instead
of starting with an empty ensemble, sort the models
in the library by their performance, and put the best
N models in the ensemble. N is chosen by looking
at performance on the hillclimbing set. This typically
adds 5-25 of the best models to an ensemble before
greedy stepwise selection begins. Since each of the N
best models performs well, they form a strong initial
ensemble and it is more difficult for greedy selection to
find models that overfit when added to the ensemble.

2.3. Bagged Ensemble Selection

As the number of models in a library increases, the
chances of finding combinations of models that overfit
the hillclimbing set increases. Bagging can minimize
this problem. We reduce the number of models selec-
tion can choose from by drawing a random sample of
models from the library and selecting from that sam-
ple. If a particular combination of M models overfits,
the probability of those M models being in a random
bag of models is less than (1 − p)M for p the fraction



of models in the bag. We use p = 0.5, and bag ensem-
ble selection 20 times to insure that the best models
will have many opportunities to be selected. The fi-
nal ensemble is the average of the 20 ensembles. Bags
of ensembles seem complex, but each ensemble is just
a weighted average of models, so the average of a set
of ensembles also is a simple weighted average of the
base-level models. Bagging is discussed in Section 5.3.

3. Data Sets

We experiment with seven problems: ADULT,
COVER TYPE, LETTER.p1, and LETTER.p2 from
the UCI Repository (Blake & Merz, 1998), MEDIS,
a pneumonia data set, SLAC, data from collabora-
tors at the Stanford Linear Accelerator, and HY-
PER SPECT, the Indian Pines hyperspectral data
(Gualtieri et al., 1999). ADULT, MEDIS and SLAC
are binary problems. COVER TYPE, LETTER, and
HYPER SPECT are 7, 26, and 16 class problems, re-
spectively. We converted these to binary because many
of the metrics we study are defined on binary prob-
lems, and because learning methods such as SVMs
and boosting are easier to apply to binary problems.
COVER TYPE was converted to binary by treating
the largest class as class 1. LETTER was converted
two ways. LETTER.p1 treats the confusable letter
’O’ as class 1 and the remaining 25 letters as class
0, yielding a very unbalanced binary problem. LET-
TER.p2 uses letters 1-13 as class 0 and letters 14-26
as class 1, yielding a difficult, but balanced, problem.
HYPER SPECT was converted to binary by treating
the large confusable class Soybean-Mintil as class 1.

These data sets were selected because they are large
enough to allow moderate size train and validation
sets, and still have data left for large final test sets. For
our experiments, we used training sets of 5000 points.
Each training sample was split into a train set of 4000
points and a hillclimbing/validation set of 1000 points.
The final test sets for most of these problems contain
20,000 points – enough to make discerning small dif-
ferences in performance reliable.

4. Performance Metrics

We use ten performance metrics: accuracy (ACC),
root-mean-squared-error (RMS), mean cross-entropy
(MXE), lift (LFT), precision/recall break-even point
(BEP), precision/recall F-score (FSC), average pre-
cision (APR), ROC Area (ROC), and a measure of
probability calibration (CAL). The tenth metric is
SAR = (ACC + ROC + (1 − RMS))/3. SAR is a
robust metric to use when the correct metric is un-

known. An attractive feature of ensemble selection
is that it can optimize to metrics such as SAR. We
compare performance using ten metrics because dif-
ferent metrics are appropriate in different settings and
because learning methods that perform well on one
metric do not always perform well on other metrics.

5. Empirical Results

In this section we compare ensemble selection to the
best models trained with any of the learning algo-
rithms, and also to several other ensemble methods.

5.1. Normalized Scores

Performance metrics such as ACC or RMS range from
0 to 1, while others (LFT, MXE) range from 0 to p
where p depends on the data. For some metrics lower
values indicate better performance. For others higher
values are better. The baseline rates of metrics such as
ROC are independent of the data, while others such as
ACC have baseline rates that depend on the data. If
baseline ACC = 0.98, ACC = 0.981 probably is poor
performance, but if the Bayes optimal ACC = 0.60,
achieving ACC = 0.59 might be excellent performance.

To allow averaging across problems and metrics, we
convert performances to a normalized [0, 1] scale. On
this scale, 0 represents baseline performance for the
metric and problem (e.g., 0.5 for ROC, or the base-
line ACC for each problem), and 1 represents the best
performance seen for any model on the final test set.1

CAL, the metric used to measure probability calibra-
tion, is unusual in that the baseline model that pre-
dicts p for all cases, where p is the percent of positives
in the test set, has excellent calibration.2 This creates
a problem when normalizing CAL scores because the
baseline model and Bayes optimal model have similar
CAL scores. Unlike the other measures, CAL is scaled
so that the minimum observed CAL score is 0.0 and
the mean observed CAL score is 1.0.

The bottom of Table 1 shows normalized scores for
each learning algorithm when its parameters are se-
lected for each problem and metric using the valida-
tion sets ensemble selection hillclimbs on. Entries in
the table are averages over the seven problems. Scores

1We would set the top of the scale to the Bayes optimal
performance for each problem and metric if we knew it.

2Because of this, measures like CAL typically are not
used alone, but are used in conjunction with other mea-
sures such as ROC to insure that only models with good
discrimination and good calibration are selected. This does
not mean CAL is a poor metric – it is effective at dis-
tinguishing poorly calibrated models from well calibrated
models.



Table 1. Normalized Scores for the Best Single Models of Each Type (bottom of tbl), and for Ensemble Selection, Bayesian
Model Averaging, Stacking with Regression, Averaging All Models, and Picking the Best Model of Any Type (top of tbl).

model acc fsc lft roc apr bep rms mxe cal sar mean

ens. sel. 0.956 0.944 0.992 0.997 0.985 0.979 0.980 0.981 0.906 0.996 0.969

bayesavg 0.926 0.891 0.979 0.985 0.977 0.956 0.950 0.959 0.907 0.941 0.948

best 0.928 0.919 0.975 0.988 0.959 0.958 0.919 0.944 0.924 0.924 0.946

avg all 0.836 0.801 0.982 0.988 0.972 0.961 0.827 0.809 0.832 0.916 0.890

stack lr 0.275 0.777 0.835 0.799 0.786 0.847 0.332 -0.990 -0.011 0.705 0.406

svm 0.813 0.909 0.948 0.962 0.933 0.938 0.877 0.878 0.889 0.905 0.905

ann 0.877 0.875 0.949 0.955 0.917 0.914 0.853 0.863 0.916 0.896 0.902

bag-dt 0.811 0.861 0.947 0.967 0.942 0.922 0.859 0.894 0.786 0.904 0.888

knn 0.756 0.846 0.909 0.937 0.885 0.889 0.761 0.735 0.876 0.847 0.844

bst-dt 0.890 0.899 0.957 0.978 0.960 0.943 0.607 0.611 0.413 0.871 0.806

dt 0.526 0.789 0.850 0.868 0.767 0.795 0.556 0.624 0.720 0.745 0.722

bst-stmp 0.732 0.790 0.906 0.919 0.861 0.834 0.304 0.286 0.389 0.659 0.669

near 1 indicate that a model performs close to the best
performance observed on all seven problems. Nega-
tive entries mean the best models perform below base-
line. Bold entries in the bottom of Table 1 show which
learning algorithms yield the best performance on each
metric. The last column is the mean normalized score
across the ten metrics.

Ignoring the ensemble methods in the top of the ta-
ble, the best algorithms overall are SVMs, ANNs,
and bagged trees, with mean normalized scores 0.905,
0.902, and 0.888, respectively. Boosted trees do not
perform well on the probability metrics (RMS, MXE,
and CAL), but are excellent on the threshold metrics
(ACC, FSC, and LFT) and ordering metrics (ROC,
APR, and BEP). If mean performance was measured
over just these six metrics, boosted trees would out-
perform bagged trees, SVMs, and ANNs.

The top of Table 1 shows normalized scores for ensem-
ble selection, Bayesian model averaging, the best indi-
vidual models of any type (BEST), a simple average of
all models (AVG ALL), and stacking with logistic re-
gression (STACK LR). Stacking (Wolpert, 1992) with
logistic regression performs poorly because regression
overfits dramatically when there are 2000 highly cor-
related input models and only 1k points in the vali-
dation set. An unweighted average of all the models
(AVG ALL) is better than weighting the models via
regression because unweighted averaging cannot over-
fit the validation set. Averaging, however, performs
worse than just picking the best single models because
some of the models have poor performance and thus
hurt the ensembles. As expected, picking the best
single model from the library (BEST) performs bet-
ter than any one learning algorithm in the bottom of

the table because it can pick the best model from any
learning method for each metric and test problem.

Bayesian model averaging (Domingos, 2000) has a
mean score of 0.948, significantly better than SVMs
(the best single model). In Bayesian model averag-
ing, each model in the library is weighted by the likeli-
hood of the data (validation set) given the model when
model predictions are treated as probabilities:

WM =
∏N

i=1
Targi ∗Predi + (1−Targi) ∗ (1−Predi)

where WM is the weight of model M , Targi is the 0/1
target for case i, and Predi is the predicted probabil-
ity that case i is class 1. Note that Bayesian model
averaging outperforms BEST on only 5 of the 10 met-
rics.

With a mean normalized score of 0.969, ensemble se-
lection is the clear winner. It outperforms the other
ensemble methods (and the best individual models) on
all 10 of the 10 metrics (significant at p = 0.001). We
believe ensemble selection consistently outperforms
the other ensemble methods for two reasons:

• ensemble selection is able to optimize the ensem-
ble differently for each performance metric

• overfitting is a serious problem when there are
2000 models to combine. The methods presented
in Section 2 to combat overfitting contribute to
ensemble selection’s excellent performance.

The consistently strong performance of ensemble selec-
tion suggests that using many different learning meth-
ods and parameter settings is an effective way of gen-
erating a diverse collection of models. The consistent
performance also suggests that forward stepwise selec-
tion is an effective way of selecting high-performance



ensembles from these models for a variety of perfor-
mance metrics if overfitting is carefully controlled.

5.2. Percent Reduction in Loss (Error)

In this section we compare ensemble selection to the
best single models (BEST in Table 1) using percent
reduction in error. One advantage of percent reduc-
tion in error compared to normalized scores is that
normalized scores change as better models are found
and shift the top of the scale up. The percent reduc-
tion in error from model A to B depends only on the
performances of models A and B, not on some other
model that defines the top of the performance scale.

To calculate percent reduction in error, we first convert
each metric to loss where 0 represents perfect perfor-
mance and 1 represents worst performance. Perfect
prediction yields ACC = BEP = FSC = ROC =
APR = SAR = 1 and RMSE = MXE = CAL = 0,
all of which have loss 0. An example will help. If
ACC improves from 0.75 to 0.77, the losses are 0.25
and 0.23, respectively, and the percent reduction in
error is 8%. One potential disadvantage of percent
reduction in loss is that it gives more emphasis to re-
ductions at low loss: reducing loss from 0.02 to 0.01
is a 50% reduction, wheras reducing loss from 0.20 to
0.19 (same absolute change), is only a 5% reduction.
In some domains this bias is appropriate. In others it
is not. Normalized scores do not have this bias.

Table 2 shows the percent reduction in loss for ensem-
ble selection on the 7 test problems and 10 metrics,
compared to the best models selected for each problem
and metric. As with normalized scores, final perfor-
mances are estimated on large final test sets not used
for training and is the average over two trials with each
problem. Positive entries in the table mean error was
reduced, i.e. ensemble selection performed better.

Ensemble selection wins 64 of 70 times (significant at
p = 0.001). On average, ensemble selection reduces
loss 8.76% over the best models for each problem and
metric. To make this concrete, if the best model has
accuracy 90.00%, loss is 0.1000, and an 8.7% reduc-
tion in loss corresponds to reducing loss to 0.0913 or
increasing accuracy to 90.87%. Similarly, if the best
model has RMS 0.2000, an 8.7% reduction in loss cor-
responds to reducing RMS to 0.1826. Test sets contain
20,000 cases. Increasing accuracy 0.87% means 174
more cases are predicted correctly by the ensembles.

The improvement is not dramatic, but consistently in-
creasing accuracy 0.87% or reducing RMS 0.0174 com-
pared to the best of 2000 models is impressive when
the best models have such good performance. But we
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Figure 2. Benefit of Bagged Selection on the 10 Metrics.
The right side of the graph at p = 1 represents no bagging.

don’t want to overstate the improvement of ensemble
selection. For comparison, bagging or boosting trees
yields a 20% reduction in loss compared to raw trees,
2.5 times the benefit of ensemble selection. But then,
improving the performance of mediocre, high variance
models such as decision trees is easier than improving
the performance of the very best models.

5.3. Bagging to Minimize Overfitting

Figure 2 shows the percent reduction in loss of ensem-
ble selection with bagging as p, the fraction of models
in the bags, varies from 1 down to 0.025 for the 10 met-
rics averaged across the 7 problems. At p = 1, bags
contain all models which is equivalent to not bagging.
On average, bagged ensemble selection reduces loss an
additional 2.5% at p = 0.5. The results in Tables 1 and
2 are for p = 0.5, a value we selected before looking at
these results, and which Figure 2 shows is suboptimal.
This 2.5% is about a third of the total 8.7% benefit we
see with ensemble selection. Figure 2 (which uses the
final test sets) suggests p in the range 0.1− 0.3 would
yield further improvement. We are currently exper-
imenting with using cross validation to pick a near
optimal value of p for each problem and metric.

6. Case Study: Classifying Sub-Atomic

Particles

Here we present a case study where optimizing an en-
semble to the correct metric has impact on an applica-



Table 2. Percent Reduction in Loss of Ensemble Selection Over the Best Models From Any Learning Algorithm.

problem acc fsc lft roc apr bep rms mxe cal sar mean

adult 3.63 1.98 6.28 5.40 5.82 3.60 0.71 1.36 9.30 4.02 4.21

cover type -0.42 -1.08 4.63 -1.27 3.52 -0.87 3.79 6.66 1.41 4.05 2.042

letter.p1 17.47 26.72 0.10 41.88 28.75 15.02 24.82 15.34 2.61 34.74 20.745

letter.p2 3.24 4.27 100.00 0.96 1.93 10.13 4.46 9.65 -40.03 6.27 10.088

medis 0.30 -6.39 0.83 2.53 4.00 6.53 0.04 0.12 9.48 1.57 1.901

hyper spect 5.40 5.29 5.98 20.96 27.28 13.55 7.71 18.75 20.89 11.91 13.772

slac 2.19 5.55 8.85 3.56 2.82 2.18 0.36 0.71 5.12 1.67 3.301

mean 4.544 5.191 18.096 10.574 10.589 7.163 5.984 7.513 1.254 9.176 8.008

tion of machine learning to a particle physics problem.
At the Stanford Linear Accelerator Center (SLAC),
high energy particle beams are collided to generate
subatomic particles. A major challenge in these ex-
periments is to correctly classify the particle tracks.
Performance is measured with the SLAC Q-score:

SLQ = ε(1 − 2w)2

where ε is the percent of events accepted for prediction,
and w is the probability of misclassification. SLQ is an
application-specific performance metric that estimates
the statistical power of the model. Increasing SLQ
by 5% is equivalent to having 5% more data, which
potentially saves hundreds of thousands of dollars or
more in accelerator time.

Bagged trees have the best SLQ performance, in-
creasing SLQ 0.0355 (a 12% improvement) over well-
optimized neural nets and decision trees. SLQ behaves
like a cross between accuracy and calibration, so it is
not surprising that bagged trees – the models with
the best calibration performance – are best on SLQ.
When an ensemble is optimized to SLQ with ensemble
selection, SLQ performance increases 6% over the best
bagged trees. This 6% increase in effective sample size
represents a large potential savings in accelerator time.

7. Discussion and Future Work

7.1. Validation and Hillclimbing Sets

Ensemble selection uses the validation set to “train”
ensembles. Hillclimbing on the validation set does not
give ensemble selection an unfair advantage over other
models. The validation set would be needed to se-
lect the parameters for each algorithm (parameter se-
lection), and then to pick the best algorithm (model
selection). Ensemble selection uses the validation set
for parameter selection, model selection, and ensem-
ble creation. With many algorithms validation data
can be put back in the train set and the model re-

trained once parameters are selected. This can also be
done with ensemble selection. Any strategy for using
and reusing validation sets, including cross validation,
can be used with ensemble selection. We currently are
running experiments with 5-fold cross validation to in-
crease the size of the hillclimbing set to include all of
the training data, not just the held-out 1k samples.

7.2. Models Selected by the Ensembles

Table 3 shows the total weight given to each type of
model for each metric on ADULT and COVER TYPE.
The average across the ten metrics (right column)
shows that KNN and BST DT receive the most weight
in the ensemble for COVER TYPE. The weights are
strikingly different for ADULT where BST STMP,
ANN, and DT receive the most weight. There also
are substantial differences between the model types
preferred for different metrics. For example, on
COVER TYPE, FSC gives high weight to boosted
trees and low weight to KNN, but these weights are
reversed for RMS and LFT. Also, ANNs get mod-
est weight for MXE and RMS (what the ANNs op-
timize), but low weight for ACC and LFT. This sug-
gests that ensemble selection is able to exploit the dif-
ferent strengths and biases of the different learning al-
gorithms when optimizing an ensemble to each metric
and to each problem.

7.3. Computational Cost

Building libraries is expensive. Because models are
independent, it is easy to parallelize model creation
and distribute training across machines. It takes about
48 hours to train the 2000 models using a cluster of ten
Linux machines. Model training is automated. There
is no parameter tuning or examining performance on
validation sets. Usually no one model is critical, so it
is not necessary to wait until all models are trained
to use the library. This provides an any-time flavor



Table 3. Aggregate Weight Given to Different Types of Models in the Ensembles.

adult acc fsc lft roc apr bep rms mxe sar avg wt

ann 0.0709 0.1316 0.1012 0.3646 0.4304 0.2432 0.1667 0.0941 0.5732 0.2720

knn 0.0205 0.0148 0.5865 0.0368 0.0286 0.0486 0.0000 0.0000 0.0492 0.0981

svm 0.0006 0.0000 0.1096 0.2841 0.2743 0.0924 0.0574 0.0000 0.0224 0.1051

dt 0.0201 0.0346 0.0070 0.0879 0.0491 0.0188 0.7456 0.8674 0.2345 0.2581

bag dt 0.0021 0.0008 0.0000 0.0038 0.0051 0.0022 0.0057 0.0102 0.0136 0.0054

bst dt 0.1100 0.1523 0.0250 0.0572 0.0319 0.0470 0.0245 0.0283 0.0748 0.0689

bst stmp 0.7759 0.6658 0.1707 0.1657 0.1806 0.5478 0.0000 0.0000 0.0321 0.3173

cov type acc fsc lft roc apr bep rms mxe sar avg wt

ann 0.0114 0.0102 0.0007 0.0382 0.0228 0.0086 0.0871 0.0966 0.0521 0.0410

knn 0.1790 0.1665 0.5759 0.2518 0.2948 0.2016 0.4364 0.4266 0.3643 0.3621

svm 0.0206 0.0161 0.0878 0.1039 0.1058 0.0507 0.0103 0.0134 0.0379 0.0558

dt 0.0606 0.0539 0.0124 0.2381 0.2423 0.0295 0.4083 0.3685 0.2000 0.2017

bag dt 0.0049 0.0056 0.0019 0.0092 0.0150 0.0064 0.0156 0.0222 0.0438 0.0156

bst dt 0.5533 0.6134 0.1298 0.2784 0.2397 0.6438 0.0423 0.0727 0.2923 0.3582

bst stmp 0.1702 0.1343 0.1914 0.0804 0.0797 0.0593 0.0000 0.0000 0.0095 0.0906

to ensemble selection: ensembles can be trained using
whatever models are available when the ensemble is
needed. It is easy to add more models later. Libraries
can be built before the performance metric is known
because the libraries themselves do not depend on the
metric that will be used to optimize the ensemble. This
makes model libraries very reusable.

Forward stepwise ensemble selection is efficient.
Adding a model to an ensemble only requires averaging
a model’s predictions with the ensemble’s predictions,
which is O(D) for D the size of the hillclimbing set.
If there are M models to choose from, this is done
M times for each selection step. If selection is run K
steps, the cost of ensemble selection is only O(D*M*K)
assuming the metric can be computed in O(D). If the
metric is more expensive than O(D) (e.g., ROC re-
quires sorting and thus is O(D*logD)), recomputing
the metric dominates. Using a JAVA implementation,
selecting an ensemble from a library of M = 2000
models, a hillclimbing set with D = 1000 points, and
K = 200 takes about a minute on a medium-power
workstation. If selection is bagged 20 times, it takes
about 20 minutes to build the final ensemble.

7.4. Optimizing To Any Performance Metric

ANNs usually are trained to minimize cross entropy
or squared error. Trees and SVMs usually maximize
accuracy. Boosting also is designed to maximize accu-
racy. Some metrics such as precision/recall and ROC
are hard to optimize to. Because model averaging is
fast, ensemble selection can try adding every model
in the library to the ensemble at each step. If the

performance of each of these ensembles can be evalu-
ated quickly on the metric, the ensemble can be opti-
mized to that metric by this greedy, brute force search.
A good ensemble usually will be found if some base-
level models or combinations of them yield good per-
formance on that metric. Although we do not know
how to optimize the base-level models to many of these
metrics, the ensemble can be optimized to them.

7.5. Beyond Binary Classification

Ensemble selection is straightforward for binary classi-
fication and regression. If the base-level models make
predictions for multiple classes, no modification to the
ensemble selection procedure is necessary for multi-
class problems. If some base-level models make pre-
dictions one dichotomy at a time (e.g. SVMs), en-
semble selection is easiest if the base-level models are
combined so that they return a predicted probability
for each class. We have not yet experimented with
multi-class ensemble selection.

8. Conclusions

Ensemble selection uses forward stepwise selection
from libraries of thousands of models to build ensem-
bles that are optimized to the given performance met-
ric. Using a variety of learning algorithms and pa-
rameter settings appears to be effective for generating
libraries of diverse, high quality models. Ensemble se-
lection’s most important feature is that it can optimize
ensemble performance to any easily computed perfor-
mance metric. Experiments with seven test problems



and ten performance metrics show that ensemble selec-
tion consistently finds ensembles that outperform all
other models, including models trained with bagging,
boosting, and Bayesian model averaging.

9. Appendix: Building Model Libraries

KNN: we use 26 values of K ranging from K = 1 to
K = |trainset|. We use KNN with Euclidean distance
and Euclidean distance weighted by gain ratio. We
also use distance weighted KNN, and locally weighted
averaging. The kernel widths for locally weighted aver-
aging vary from 20 to 210 times the minimum distance
between any two points in the train set.

ANN: we train nets with gradient descent backprop
and vary the number of hidden units {1, 2, 4, 8, 32,
128} and the momentum {0, 0.2, 0.5, 0.9}. We don’t
use validation sets to do weight decay or early stop-
ping. Instead, we stop the nets at many different
epochs so that some nets underfit or overfit.

DT: we vary the splitting criterion, pruning options,
and smoothing (Laplacian or Bayesian smoothing).
We use all of the DT models in Buntine’s IND package:
Bayes, ID3, CART, CART0, C4, MML, and SMML.
We also generate trees of type C44 (C4 with no prun-
ing), C44BS (C44 with Bayesian smoothing), and MM-
LLS (MML with Laplacian smoothing). See (Provost
& Domingos, 2003) for descriptions of C44.

BAG-DT: we bag 25 trees of each type. Each tree
trained on a bootstrap sample is added to the library,
as well as the final bagged ensemble that averages all
these trees. With BST-DT we boost each tree type.
Boosting can overfit, so we add boosted DTs to the
library after {2, 4, 8, 16, 32, 64, 128, 256, 512, 1024,
2048} steps of boosting. With BST-STMP we use
stumps (single level decision trees) with 5 different
splitting criteria, each boosted {2, 4, 8, 16, 32, 64,
128, 256, 512, 1024, 2048, 4096, 8192} steps.

SVMs: we use most kernels in SVMLight (Joachims,
1999) {linear, polynomial degree 2 & 3, radial with
width {0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 2}} and
vary the regularization parameter C by factors of ten
from 10−7 to 103. The output range of SVMs is
[−∞, +∞] instead of [0, 1]. To make the SVM pre-
dictions compatible with other models, we use Platt’s
method to convert SVM outputs to probabilities by
fitting them to a sigmoid (Platt, 1999).
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